Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1224383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146368

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Receptores de Superfície Celular , Poluição por Fumaça de Tabaco , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/microbiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/patologia , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Expressão Gênica
2.
Front Immunol ; 14: 1261483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841243

RESUMO

Introduction: The pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis. Methods: We chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain. Results: We investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis. Discussion: Together, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets.


Assuntos
Pneumonia , Relesões , Camundongos , Animais , Camundongos Transgênicos , Inflamação , Fibrose , Morte Celular
3.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36798300

RESUMO

Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.

4.
PLoS Biol ; 20(12): e3001891, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477165

RESUMO

Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.


Assuntos
Astrócitos , Conexinas , Modelos Animais de Doenças , Animais , Camundongos , Conexinas/metabolismo , Astrócitos/metabolismo
5.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359882

RESUMO

The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , SARS-CoV-2 , Imunidade Adaptativa , Autoimunidade
6.
Front Immunol ; 13: 918507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045672

RESUMO

Chronic pulmonary inflammation and chronic obstructive pulmonary disease (COPD) are major health issues largely due to air pollution and cigarette smoke (CS) exposure. The role of the innate receptor NLRP3 (nucleotide-binding domain and leucine-rich repeat containing protein 3) orchestrating inflammation through formation of an inflammasome complex in CS-induced inflammation or COPD remains controversial. Using acute and subchronic CS exposure models, we found that Nlrp3-deficient mice or wild-type mice treated with the NLRP3 inhibitor MCC950 presented an important reduction of inflammatory cells recruited into the bronchoalveolar space and of pulmonary inflammation with decreased chemokines and cytokines production, in particular IL-1ß demonstrating the key role of NLRP3. Furthermore, mice deficient for Caspase-1/Caspase-11 presented also decreased inflammation parameters, suggesting a role for the NLRP3 inflammasome. Importantly we showed that acute CS-exposure promotes NLRP3-dependent cleavage of gasdermin D in macrophages present in the bronchoalveolar space and in bronchial airway epithelial cells. Finally, Gsdmd-deficiency reduced acute CS-induced lung and bronchoalveolar space inflammation and IL-1ß secretion. Thus, we demonstrated in our model that NLRP3 and gasdermin D are key players in CS-induced pulmonary inflammation and IL-1ß release potentially through gasdermin D forming-pore and/or pyroptoctic cell death.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Caspase 1/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana/metabolismo
7.
Front Immunol ; 12: 753789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659260

RESUMO

Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.


Assuntos
Doenças Autoimunes/imunologia , DNA/análise , Imunidade Inata/fisiologia , Inflamação/imunologia , Proteínas de Membrana/fisiologia , Neoplasias/imunologia , Doenças Neurodegenerativas/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Doenças Autoimunes/fisiopatologia , Autofagia , Citocinas/fisiologia , Citoplasma/química , Guanosina Trifosfato/metabolismo , Humanos , Lactente , Inflamação/fisiopatologia , Interferon Tipo I/fisiologia , Mitocôndrias/fisiologia , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/fisiologia , Transdução de Sinais/fisiologia
8.
FASEB J ; 35(8): e21757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34233045

RESUMO

Pyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern.


Assuntos
Apoptose/fisiologia , DNA Mitocondrial/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Piroptose/fisiologia , Animais , Caspases/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/deficiência , Proteínas de Ligação a Fosfato/genética , Pirina/metabolismo , Receptores de Estrogênio/fisiologia
9.
Immunohorizons ; 5(5): 273-283, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958388

RESUMO

Cystic fibrosis is associated with chronic Pseudomonas aeruginosa colonization and inflammation. The role of MyD88, the shared adapter protein of the proinflammatory TLR and IL-1R families, in chronic P. aeruginosa biofilm lung infection is unknown. We report that chronic lung infection with the clinical P. aeruginosa RP73 strain is associated with uncontrolled lung infection in complete MyD88-deficient mice with epithelial damage, inflammation, and rapid death. Then, we investigated whether alveolar or myeloid cells contribute to heightened sensitivity to infection. Using cell-specific, MyD88-deficient mice, we uncover that the MyD88 pathway in myeloid or alveolar epithelial cells is dispensable, suggesting that other cell types may control the high sensitivity of MyD88-deficient mice. By contrast, IL-1R1-deficient mice control chronic P. aeruginosa RP73 infection and IL-1ß Ab blockade did not reduce host resistance. Therefore, the IL-1R1/MyD88 pathway is not involved, but other IL-1R or TLR family members need to be investigated. Our data strongly suggest that IL-1 targeted neutralizing therapies used to treat inflammatory diseases in patients unlikely reduce host resistance to chronic P. aeruginosa infection.


Assuntos
Interleucina-1beta/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Animais , Humanos , Imunidade Inata , Interleucina-1beta/genética , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Infecções por Pseudomonas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais , Receptores Toll-Like/imunologia
10.
Sci Rep ; 10(1): 21356, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262522

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Oncoimmunology ; 9(1): 1758606, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32923117

RESUMO

Antitumor immunity is mediated by Th1 CD4+ and CD8+ T lymphocytes, which induce tumor-specific cytolysis, whereas Th17 CD4+ T cells have been described to promote tumor growth. Here, we explored the influence of IL-17 on the ability of therapeutic vaccines to induce the rejection of tumors in mice using several adjuvants known to elicit either Th1 or Th17-type immunity. Immunization of mice with Th1-adjuvanted vaccine induced high levels of IFN-γ-producing T cells, whereas injection with Th17-promoting adjuvants triggered the stimulation of both IL-17 and IFN-γ-producing T cells. However, despite their capacity to induce strong Th1 responses, these Th17-promoting adjuvants failed to induce the eradication of tumors. In addition, the systemic administration of IL-17A strongly decreases the therapeutic effect of Th1-adjuvanted vaccines in two different tumor models. This suppressive effect correlated with the capacity of systemically delivered IL-17A to inhibit the induction of CD8+ T-cell responses. The suppressive effect of IL-17A on the induction of CD8+ T-cell responses was abolished in mice depleted of neutrophils, clearly demonstrating the role played by these cells in the inhibitory effect of IL-17A in the induction of antitumor responses. These results demonstrate that even though strong Th1-type responses favor tumor control, the simultaneous activation of Th17 cells may redirect or curtail tumor-specific immunity through a mechanism involving neutrophils. This study establishes that IL-17 plays a detrimental role in the development of an effective antitumor T cell response and thus could strongly affect the efficiency of immunotherapy through the inhibition of CTL responses.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Interleucina-17 , Neoplasias , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/farmacologia , Feminino , Interleucina-17/farmacologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Células Th1/imunologia
13.
Cell Commun Signal ; 18(1): 141, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894139

RESUMO

BACKGROUND: Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS: Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS: Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1ß. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1ß relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1ß into IL-1ß is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS: In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1ß. The Cg-stimulated macrophages produces pro-IL-1ß depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1ß is dependent on the canonical NLRP3 inflammasome.


Assuntos
Carragenina/imunologia , Citocinas/imunologia , Ativação de Macrófagos , Macrófagos Peritoneais/imunologia , Animais , Células Cultivadas , Inflamassomos/imunologia , Inflamação/imunologia , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator de Necrose Tumoral alfa/imunologia
14.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825056

RESUMO

The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.

15.
Front Immunol ; 11: 1622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849550

RESUMO

Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.


Assuntos
Fator Ativador de Células B/biossíntese , Exposição por Inalação/efeitos adversos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Fator Ativador de Células B/genética , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Infiltração de Neutrófilos , Pneumonia/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fumar Tabaco/efeitos adversos
16.
Front Immunol ; 11: 588799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488589

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-ß modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Proteínas de Membrana/imunologia , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nucleicos , Nucleotidiltransferases/genética , Receptor de Interferon alfa e beta/genética
17.
Sci Rep ; 9(1): 14848, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619733

RESUMO

Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.


Assuntos
DNA/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Pneumonia/metabolismo , Enfisema Pulmonar/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sequências Repetitivas de Ácido Nucleico
18.
Front Immunol ; 10: 702, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057534

RESUMO

Oral T. gondii infection (30 cysts of 76K strain) induces acute lethal ileitis in sensitive C57BL/6 (B6) mice with increased expression of IL-33 and its receptor ST2 in the ileum. Here we show that IL-33 is involved in ileitis, since absence of IL-33R/ST2 attenuated neutrophilic inflammation and Th1 cytokines upon T. gondii infection with enhanced survival. Blockade of ST2 by neutralizing ST2 antibody in B6 mice conferred partial protection, while rmIL-33 aggravated ileitis. Since IL-22 expression further increased in absence of ST2, we blocked IL-22 by neutralizing antibody, which abrogated protection from acute ileitis in ST2 deficient mice. In conclusion, severe lethal ileitis induced by oral T. gondii infection is attenuated by blockade of ST2 signaling and may be mediated in part by endogenous IL-22.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucinas/metabolismo , Toxoplasma/metabolismo , Toxoplasmose Animal/metabolismo , Animais , Citocinas/metabolismo , Microbioma Gastrointestinal/fisiologia , Ileíte/metabolismo , Ileíte/parasitologia , Íleo/metabolismo , Íleo/parasitologia , Inflamação/metabolismo , Inflamação/parasitologia , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Interleucina 22
19.
Sci Rep ; 9(1): 5788, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962463

RESUMO

Unconventional protein secretion represents an important process of the inflammatory response. The release of the pro-inflammatory cytokine interleukin (IL)-1ß which burst during pyroptosis as a consequence of gasdermin D plasma membrane pore formation, can also occur through other unconventional secretion pathways dependent on caspase-1 activation. However, how caspase-1 mediates cytokine release independently of gasdermin D remains poorly understood. Here we show that following caspase-1 activation by different inflammasomes, caspase-1 cleaves early endosome autoantigen 1 (EEA1) protein at Asp127/132. Caspase-1 activation also results in the release of the endosomal EEA1 protein in a gasdermin D-independent manner. EEA1 knock-down results in adecreased release of caspase-1 and IL-1ß, but the pyroptotic release of other inflammasome components and lactate dehydrogenase was not affected. This study shows how caspase-1 control the release of EEA1 and IL-1ß in a pyroptotic-independent manner.


Assuntos
Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Endossomos/metabolismo , Células HEK293 , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Proteínas de Transporte Vesicular/genética
20.
Oncoimmunology ; 7(9): e1484979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228955

RESUMO

The high expression of inducible nitric oxide synthase (NOS2) by myeloid-derived suppressor cells (MDSCs) is a key mechanism of immune evasion in cancer. Recently we reported that NOS2 is also expressed by γδ T cells in melanoma, contributing to their polarization towards a pro-tumor phenotype. The molecular mechanisms underlying regulation of NOS2 expression in tumor-induced γδ T cells remain unexplored. By using the model of mice transgenic for the ret oncogene (Ret mice) that develops a spontaneous metastatic melanoma, we evidence that interleukin (IL)-1ß and IL-6 drive NOS2 expression in γδ T cells. Indeed, their in vivo neutralization lessens the γδ T cell capacity to produce not only NOS2, but also IL-17 involved in the recruitment of MDSCs at the primary tumor site. The treatment also delayed tumor cell dissemination and induced vitiligo in a significant proportion of Ret mice. Interestingly, Ret mice developing a less aggressive melanoma, characterized by the spontaneous development of a concomitant autoimmune vitiligo, exhibit a weaker concentration of inflammatory cytokines and a reduction of tumor infiltrating γδ T cells expressing NOS2, when compared to Ret mice without any signs of vitiligo. Overall our results support that the level of inflammation at the tumor site regulates NOS2 expression by γδ T cells and the development of vitiligo associated melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA